mp >300 °C; UV (0.1 N HCl) λ_{max} 271 nm (ϵ 18400); UV (H₂O) λ_{max} 280 nm (ϵ 14 500); UV (0.1 N NaOH) λ_{max} 279 nm (ϵ 14 400); ³¹P NMR (DMSO- d_6 + D₂O) δ 1.66 (P-8); CD [θ]²⁵ (nm) -5460 (280) (negative shoulder), -13400 (263) (negative maximum), -17080 (221) (negative maximum); for ¹H NMR parameters, see Tables I and II. Anal. Calcd for C₁₂H₁₆N₅O₆P·CF₃CO₂H: C, 35.68; H, 3.64; N, 14.86. Found: C, 35.78; H, 3.87; N, 14.72.

Ethyl Hydrogen P(R),5'-Anhydroadenosine-8phosphonate Trifluoroacetic Salt (4b). A solution of 3b (160 mg, 0.40 mmol) in 80% CF₃CO₂H (2 mL) was kept at room temperature for 30 min. After evaporation of the solvent, the residue was triturated with a small amount of water to afford white needles (120 mg, 62%): mp >300 °C; UV (0.1 N HCl) λ_{max} 272 nm (ϵ 17600); UV (H₂O) λ_{max} 281.5 nm (ϵ 13600); UV (0.1 N NaOH) λ_{max} 279 nm (ϵ 13500); ³¹P NMR (DMSO- d_6 + D₂O) δ -1.50 (P-8); CD $[\theta]^{25}$ (nm) +11 370 (280) (positive maximum), -6520 (257) (negative maximum), -34800 (220) (negative maximum); for ¹H NMR parameters, see Tables I and II. Anal. Calcd for C₁₂H₁₆N₅O₆P·⁴/₅CF₃COOH·2H₂O: C, 33.71; H, 4.33; N, 14.45. Found: Č, 33.68; H, 4.48; N, 14.74.

P,5'-Anhydroadenosine-8-phosphonic Acid (5). i. Compound 4a (100 mg, 0.21 mmol) was dissolved in concentrated NH_4OH (5 mL), and the mixture was warmed in a steel bomb at 50 °C overnight. After cooling, the solution was concentrated to 1 mL to give white crystals (47.3 mg, 62%): mp >300 °C; FAB-MS (positive), m/z 330 (M⁺ + H); FAB-MS (negative), m/z328 (M⁺ – H); UV (0.1 N HCl) λ_{max} 269.5 nm (ϵ 19100), 278 (sh, ϵ 13 400); UV (H₂O) $\lambda_{\rm max}$ 269.5 nm (ϵ 15 400), 275 (sh, ϵ 15 100), 285 (sh, ϵ 9700); UV (0.1 N NaOH) λ_{max} 269.5 nm (ϵ 15400), 275 (sh, ϵ 15000), 285 (sh, ϵ 9800); for ¹H NMR parameters, see Tables I and II. Anal. Calcd for C₁₀H₁₂N₅O₆P·NH₃·H₂O: C, 32.97; H, 4.70; N, 23.07. Found: C, 33.02; H, 4.47; N, 23.32.

ii. Compound 4b (50 mg, 0.103 mmol) was treated in a similar manner to that described in section i to give white crystals (19.6 mg, 52%). The product had the same UV and ¹H NMR spectra as those of an authentic sample described above.

Acknowledgment. We are grateful to Dr. J. J. Fox, Sloan-Kettering Institute for Cancer Research, for his helpful suggestions for the preparation of this manuscript.

Registry No. 1, 13089-45-7; 2, 103022-70-4; 3a, 115794-10-0; 3b, 115794-11-1; 4a, 115705-88-9; 4b, 115794-13-3; 5, 115705-89-0; ClP(OEt)₂, 589-57-1.

Synthesis of Ethylenes with Acyclic Quaternary Carbons by Dehydration of Neopentyl Alcohols. Application of the 2-D INAPT Technique

C. A. Drake,[†] Norman Rabjohn,* Michael S. Tempesta, and Richard B. Taylor[‡]

Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211

Received January 20, 1988

Di- and triquaternary ethylenes (5, 12 and 7, 19, Scheme I) have been synthesized by dehydration of sec- and tert-neopentyl alcohols (4, 11 and 6, 18) without rearrangement. It is thought that steric factors determine the structures of the products. The intermediate imines 2 and 14, from the reaction of nitriles 1 and 13 with $t-C_4H_9Li$, may be hydrolyzed only in the first case to ketones (3). More highly substituted ketones (10 and 16) were obtained by the reaction of t-RMgX (9) or $(CH_3)_3$ CMgCl with 3,3-dialkyl and 2,3,3-trialkyl acid chlorides (8 and 15). Ketones 3 and 10 were reduced by LiAlH₄ to secondary carbinols 4 and 11. The tertiary carbinols 6 were prepared from 3 by treatment with t-C₄H₉Li. The more hindered ketones 16 failed to add t-C₄H₉Li, but were reduced to secondary alcohols 18, instead of the desired tertiary alcohols 17. The carbinols 4, 6, 11, and 18 were dehydrated by heating with KHSO₄. The 2-D INAPT NMR technique was used to establish the stereostructure of 19 by measuring the long-range heteronuclear coupling constants about the ene.

Methods of synthesis of highly hindered olefins have been investigated during the last many years with the goal of obtaining the apparently unknown tetra-tert-butylethylene.¹ Bulky 1,2-di- and tri-*tert*-alkylethylenes are known, and several approaches have been developed to obtain them. Among these are the extrusion method of Barton,² the McMurry coupling reaction of carbonyls,³ and others of more limited applicability.⁴

Perhaps the closest approach to tetra-tert-butylethylene has afforded the highly strained ethyltri-tert-butylethylene.⁵ Other crowded molecules such as tetrakis(2formyl-2-propyl)ethylene,⁶ tetrasubstituted ethylenes with "tied-back" structures,⁵ tetraisopropylethylene⁷ and its cyclic analogues,⁸ and tri-*tert*-butylethylene are known.⁹ The *tert*-butyl group has been employed most frequently to produce crowding in compounds because of its size, symmetry, and availability. Also, a number of studies of the physical and, to some extent, chemical properties of such strained substances have been carried out.¹⁰ In the present investigation, the availability of procedures and materials for changing the structure of quaternary carbon groups¹¹ suggested a way of obtaining a series of trialkylethylenes with more structural variability than from the usual three- and four-carbon reagents. 3,3-Dialkyl

[†]Current address: Phillips Petroleum Co., Bartlesville, OK 74003. [‡]Current address: Dow Corning, Midland, MI 48686.

⁽¹⁾ For leading references, see: Greenberg, A.; Liebman, J. F. Strained Organic Molecules; Academic: New York, 1978; pp 108-112. Sandstrom, J. In, Topics in Stereochemistry; Allinger, N. L., Eliel, E. L., Wilen, S.

<sup>H., Eds.; Wiley: New York, 1983; Vol. 14, pp 83–181.
(2) Barton, D. H. R.; Guziec, F. S.; Shahak, T. J. Chem. Soc., Perkin</sup> (1) Daton, D. H. E., Gulaco, F. S., Shahaa, T. S. Chem. 59, Chem. 1974, 1794–1799. Back, T. G.; Barton, D. H. R.; Britten-Kelly, M. R.; Guziec, F. S.; Murphy, C. J. J. Org. Chem. 1980, 45, 2890–2893.
 (3) McMurray, J. E.; Fleming, M. P.; Kees, K. L.; Krepski, L. R. J. Org. Chem. 1978, 43, 3255–3266. Lenoir, D.; Malwitz, D.; Meyer, B. Tetrahedron Lett. 1984, 25, 2965–2968.
 (4) For localing reference and Karke A. Purrer, W. Nichel, W. Y.

⁽⁴⁾ For leading references, see: Krebs, A.; Ruger, W.; Nickel, W.-V.
(4) For leading references, see: Krebs, A.; Ruger, W.; Nickel, W.-V. *Tetrahedron Lett.* 1981, 22, 4937–4970. Cullen, E. R.; Guziec, F. S.;
Hollander, M. I.; Murphy, C. J. *Tetrahedron Lett.* 1981, 22, 4563–4566.
Loerzer, R.; Gerke, R.; Luttke, W. *Tetrahedron Lett.* 1983, 24, 5861–5864.
Krebs, A.; Born, W.; Kaletta, B.; Nickel, W.-V.; Rüger, W. *Tetrahedron Lett.* 1983, 24, 4821–4823. Hernandez, D.; Larson, G. L. J. Org. Chem.
1984, 4025
Markin, D. Markin, D.; Markin, D.; Markin, D.; Markin, D.; Markin, M.; Markin, M.; Markin, D.; 1984, 49, 4285-4287. Lenoir, D.; Malwitz, D.; Meyer, B. Tetrahedron Lett. 1984, 25, 2965-2968. Krebs, A.; Rüger, W.; Nickel, W.-V.; Wilke, M.; Burkert, V. Chem. Ber. 1984, 117, 318-321. Krebs, A.; Nickel, W.-V.; Tikwe, L.; Kopf, J. Tetrahedron Lett. 1985, 26, 5135-5136. Sakurai, H.; Tobita, H.; Nakadaira, Y.; Kabuto, C. J. Am. Chem. Soc. 1982, 104, 4288-4289. Gano, J. E.; Wettach, R. H. J. Am. Chem. Soc. 1982, 104, 2326-2327. Adam, W.; Martinez, G.; Thompson, J. J. Org. Chem. 1981, 46, 3359-3361. Lenoir, D.; Burghard, H. J. Chem. Res., Miniprint 1980, 4719-4724

⁽⁵⁾ Krebs, A.; Kaletta, B.; Nickel, W.-U.; Ruger, W.; Tikwe, L. Tet-rahedron 1986, 42, 1693-1702. Guziec, F. S., Jr.; San Filippo, L. J.; Murphy, C. J.; Moustakis, C. A.; Cullen, E. R. Tetrahedron 1985, 41, 4843-4852.

nitriles (1) (Scheme I) were selected as materials for building the desired molecules.

Results and Discussion

The 3,3-dialkyl nitriles (1) were available from previous studies¹¹ and appeared to offer an approach to 1,2-diquaternary-substituted alkenes like 5, 7, and 12. Such nitriles react with *n*-alkylmagnesium halides nearly quantitatively to give 3,3-dialkyl-substituted ketones, but the reaction failed with $t-C_4H_9MgCl^{.12}$ In the present study, however, it was found that t-C₄H₉Li reacts rapidly with these nitriles and, after acidification, affords high yields of ketimines (2) instead of the expected ketones (3).¹³ These ketimines are relatively stable in aqueous acid and give only a faint odor of ammonia after several months in air. Attempts to reduce them with Adams's catalyst or LiAlH₄ were unsuccessful. Hydrolysis of 2 to ketones 3 was accomplished only after refluxing with 50 wt % H_2SO_4 for several hours.

Addition of $(CH_3)_3$ CLi to 3 gave the tertiary carbinols 6 in yields of 65-90%. After addition of the lithium

reagent at room temperature, the reaction mixtures were heated at reflux for several hours. In contrast, Bartlett and co-workers reported that 2,2,4,4-tetramethyl-3-pentanone is reduced to 66% of the carbinol plus 15% of a bimolecular product, when reacted with (CH₃)₃CLi in ether at 35 °C.¹⁴ Later Bartlett and Lefferts found that the same conditions at -60 to -70 °C produced 81% of tritert-butylcarbinol.¹⁵ Molecular models of the two types of ketones suggest that crowding is comparable and the related carbinols are still more closely packed. The differences in results might be ascribed to the solvent systems and the $(CH_3)_3$ CLi reagents employed.

The secondary alcohols 4 were obtained by reduction of 3 and were distilled without decomposition. Prior studies indicated that sec-neopentyl alcohols such as 4 may undergo rearrangement on dehydration. Howard and coworkers observed that the dehydration of 2,2,5,5-tetramethyl-3-hexanol over Al_2O_3 gave, with 2,2,5,5-tetramethyl-3-hexene, a mixture of 2,3,5,5-tetramethyl-1- and -2-hexenes.¹⁶ It might be expected that 4 would undergo similar Whitmore or Wagner-Meerwein-type rearrangements;¹⁷ however, as reported earlier,¹⁸ only 5,5-diethyl-2,2-dimethyl-3-nonene (5b) was formed when the alcohol

⁽⁶⁾ Krebs, A.; Nickel, W.-U.; Tikwe, L.; Koft, J. Tetrahedron Lett. (7) Langler, R. F.; Tidwell, T. T. Tetrahedron Lett. 1985, 26, 777-788.
 (7) Langler, R. F.; Tidwell, T. T. 1978, 24, 1985, 1985, 26, 777-788.

 ⁽⁸⁾ Tidwell, T. T. Tetrahedron 1978, 34, 1855–1868.
 (9) Abruscato, G. J.; Tidwell, T. T. J. Am. Chem. Soc. 1970, 92,

^{4125-4127;} J. Org. Chem. 1972, 37, 4151-4156.

 ⁽¹⁰⁾ For leading references, see: References 8, 9. Mollere, P. D.; Houk,
 K. N.; Bomse, D. S.; Morton, T. J. J. Am. Chem. Soc. 1976, 98, 4732–4736.
 Loerzer, R. G.; Gerke, R.; Lüttke, W. Tetrahedron Lett. 1983, 24, 5861-5864. Lomas, J. S. Nouv. J. Chim. 1984, 8, 365-372. Rüchardt, C.; Beckhaus, H.-D. Angew. Chem., Int. Ed. Engl. 1985, 24, 529-538.

⁽¹¹⁾ Rabjohn, N.; Phillips, L. V.; DeFeo, R. J. J. Org. Chem. 1959, 24, 1964-1969.

⁽¹²⁾ Rabjohn, N.; Crow, E. L., unpublished work, See also: Weiberth,
F. J.; Hall, S. S. J. Org. Chem. 1987, 52, 3901-3904.
(13) Rabjohn, N.; Stapp, P. R. J. Org. Chem. 1961, 26, 45-50.

⁽¹⁴⁾ Bartlett, P. D.; Swain, C. G.; Woodward, R. B. J. Am. Chem. Soc. 1941, 63, 3229-3230

⁽¹⁵⁾ Bartlett, P. D.; Lefferts, E. B. J. Am. Chem. Soc. 1955, 77, 2804 - 2805.

⁽¹⁶⁾ Howard, F. L.; Mears, T. W.; Fookson, A.; Pomerantz, T. J. Am. Chem. Soc. 1946, 68, 2121.

⁽¹⁷⁾ For leading references, see: Pocker, Y. Molecular Rearrangements; deMayo, P. Ed.; Interscience: New York, 1963; Vol. 1, Chapter Bethel, D.; Gold, V. Carbonium Ions An Introduction; Academic: London, 1967; pp 204-218. Karabatsos, G. J.; Fry, J. L. Carbonium Ions; Olah, G. A., Schleyer, P. v. R., Eds.; Wiley-Interscience: New York, 1970; Vol. II, pp 532-553. Krözinger, H. The Chemistry of the Hydroxyl Group; Patai, S., Ed.; Interscience: New York, 1971; Part 2, Chapter 12. (18) Rabjohn, N.; Drake, C. A. J. Am. Chem. Soc. 1966, 88, 3154.

The other carbinols (4) were dehydrated similarly by KHSO₄ to afford unrearranged olefins 5a,c-f. Since, as started earlier, 2,2,5,5-tetramethyl-3-hexanol is dehydrated over alumina to rearranged olefins, we considered the possibility that KHSO₄ in unique. However, heating of this carbinol with KHSO₄ produced essentially the same mixture of olefins as reported.¹⁶ On the other hand, dehydration of 4b with alumina gave over 85% of unrearranged 5b.

These data indicate structural differences between **4b** and 2,2,5,5-tetramethyl-3-hexanol. Molecular models of the carbonium ions expected from each alcohol, as well as those that might arise from Wagner-Meerwein shifts, were constructed. The initial planar ion **20**, from the 3-hexanol,

shows little steric strain, as does the cation 21 which is responsible for the two rearranged hexenes. The ion 22from 4b is not strained excessively; however, 23, resulting from a methyl shift, has an extreme amount of crowding. Accordingly, it appears that the dehydration of carbinols 4 produces unrearranged alkenes 5 due to the instability of intermediate carbocations which could lead to rearranged products.

The carbinols 6 were heated with $KHSO_4$ at 180 °C for 20 h, and mixtures resulted which consisted of unchanged alcohols, ketones (3), and olefinic materials. The latter were separated by preparative GC to the olefins 7. Five carbinols were dehydrated, and only in two instances were olefins obtained other than the unrearranged 7; however, the presence of other unsaturated compounds was indicated.

Rearrangements of tertiary carbocations from highly crowded molecules such as 6 are well-known.¹⁷ The solvolysis of tri-*tert*-butylcarbinyl *p*-nitrobenzoate gave only 2-*tert*-butyl-3,3,4,4-tetramethyl-1-pentene, which apparently arose by methyl and *tert*-butyl shifts. Similarly, the triisopropylcarbinyl ester afforded the unrearranged olefin by the loss of a proton, and an olefin formed by a methyl shift or one involving the latter followed by the rearrangement of an isopropyl group.¹⁹ Carbinol 6c gave a mixture of olefins, which was separated by preparative GC into three components. Their probable structures are supported by IR, NMR, and mass spectra and are represented by 7b (38%), 24 (14%), and 25 (3%).

The method described here for synthesizing 1,2-di- or 1,1,2-tri-tert-alkylethylenes (5, 7) is limited to the availability of tertiary organolithium reagents. At present, methods for preparing them in the laboratory do not seem to be at hand. Another approach to a more general synthesis of alkenes such as 12 appeared to be by the addition

7b $C(CH_3)_3$ 24 $(C_3H_7)_3CCH = C - C(CH_3)_2$ $CH_3 C(CH_3)_3$ 25

J. Org. Chem., Vol. 53, No. 19, 1988 4557

CH3 CH3

of more easily obtainable tertiary organopotassium reagents to nitriles 1. An attempt to cause ethylmethylphenylcarbinylpotassium to react with 1c gave only starting materials.

The condensation of Grignard reagents with acid chlorides in the presence of inorganic salts has been shown to produce ketones in satisfactory yields in a number of cases.²⁰ The acids required for obtaining 12 were available from the hydrolysis of 1 and were converted to acid chlorides 8 by using SOCl₂. Condensation of the acid chlorides with dimethylethyl-, triethyl-, and butyldimethylcarbinylmagnesium chlorides, using CuCl, gave ketones 10 in 65–89% yield. Reduction to carbinols 11 followed by dehydration with KHSO₄ led to 12 in 75–91% yields. Their ene IR absorptions near 980 cm⁻¹ and ¹H NMR coupling constants of 16.4 and 16.5 Hz for 12a,c indicate trans arrangements.

Although this method offers more possibility for the synthesis of 1,2-di-*tert*-alkylethylenes, it is limited also by the accessibility of *tert*-alkylmagnesium halides. Whitmore reported that he was unable to prepare such compounds larger than butylethylmethylcarbinyl chloride.²¹ Birch and Robinson found that 11-chloro-11-methylheneicosane failed to react with Mg.²² Present attempts to make Grignard reagents larger than triethylcarbinylmagnesium chloride were difficult, and the latter was obtained only with high-speed stirring. Even this method failed with dipropylhexylcarbinyl chloride.

The alkylation of 1 has been investigated¹³ and seemed to offer a way to increase the bulk in the highly substituted olefins. The 2-substituted nitriles 13 reacted readily with *tert*-butyllithium to give imines 14. Attempts to hydrolyze them to ketones by using 10–95% H_2SO_4 were unsuccessful. An alternative approach to the substituted ketones, i.e., alkylation of 3 by alkyl halides and NaNH₂, failed.

The nitriles 13 were hydrolyzed to acids by the method of Sarel and Newman²³ and then converted to acid chlorides (15), which were reacted with $(CH_3)_3CMgCl$ in the presence of $CuCl^{20}$ to give ketones 16. Further reaction of the ketones with $(CH_3)_3CLi$ with the intent of obtaining the highly hindered tertiary carbinols 17 gave alcohols which, on dehydration by heating with KHSO₄, furnished olefins whose ¹H NMR spectra displayed one vinyl proton signal. This suggested that the olefins resulted from a series of rearrangements or that the ketones 16 had been reduced to 18. ¹³C NMR studies of 19a-c using the DEPT method²⁴ gave carbon multiplicities, and 2-D ¹³C-¹³C au-

⁽²⁰⁾ Percival, W. C.; Wagner, R. B.; Cook, N. C. J. Am. Chem. Soc.
1953, 75, 3731-3734. Dubois, J. E.; Boussu, M. Tetrahedron 1973, 29, 3943-3952. Posner, G. H.; Whitten, C. E.; McFarland, P. E. J. Am. Chem. Soc. 1972, 94, 5106-5108. MacPhee, J. A.; Dubois, J. E. Tetrahedron Lett. 1972, 467-470. Cook, N. C.; Percival, W. C. J. Am. Chem. Soc. 1949, 71, 4141-4142. DuBois, J. E.; Zhang, B. L.; Lion, C. Tetrahedron 1981, 37, 4189-4194. Shirley, D. A. In Organic Reactions; Adams, R. Ed.; Wiley: New York, 1954; Vol. 8, Chapter 2.

⁽²¹⁾ Whitmore, F. C.; Badertscher, D. E. J. Am. Chem. Soc. 1933, 55, 1559–1567.

⁽²²⁾ Birch, A. J.; Robinson, R. J. Chem. Soc. 1942, 488-497.
(23) Sarel, S.; Newman, M. S. J. Am. Chem. Soc. 1956, 78, 5416-5420.

⁽¹⁹⁾ Bartlett, P. D.; Stiles, M. J. Am. Chem. Soc. 1955, 77, 2806-2814. (23) S

Figure 1. ¹³C NMR assignments (75.45 MHz, ppm in CDCl₃) on 19c from the 2-D autocorrelated experiment.

tocorrelated double quantum coherence spectroscopy²⁵ on 19c allowed peak assignments to be made and indicated that olefins 19 have the trisubstituted ethylene structure (Figure 1). A 2-D INAPT (two-dimensional insensitive nuclei assigned by polarization transfer) spectrum²⁶ (see Figure 2) of 19c afforded ${}^{2}J_{CH}$, ${}^{3}J_{CH}$, ${}^{4}J_{CH}$ values for the coupling of the olefinic proton with the adjacent olefinic C and one *tert*-butyl group, as well as the isobutyl and quaternary carbon group $R_1R_2R_3C$ (Figure 3A,B). This allowed assignment of the ene stereochemistry as depicted (E). Values of ${}^{3}J_{CH}$ for enes depend on geometry and generally are larger for trans- than for cis-coupled nuclei.27 For 19c, the ${}^{3}J_{CH}$ values found between the vinyl proton and the quaternary (δ 45.4) and the methylene (δ 36.9) carbons are 5.8 and 10.1 Hz, respectively, and are in accord with the structure depicted in Figure 1. Mass spectra of 19 are those expected of the trisubstituted ethylenes, and the UV absorptions of 19b, λ_{max} 200.5 nm, ϵ 8930, are comparable to those of several highly branched trialkylethylenes.²⁸

Obviously, 16 were reduced by $(CH_3)_3$ CLi to secondary alcohols. The reduction of carbonyls by Grignard reagents is well-known.²⁹ In general, it is felt that this type of reaction is less important when alkyllithium reagents are used,³⁰ particularly at lower temperatures; as mentioned earlier, di-tert-butyl ketone and (CH₃)₃CLi give 81% of tri-tert-butylcarbinol at -60 to -70 °C,¹⁴ but at 30-35 °C, 66% reduction occurred.¹⁵

Experimental Section

Boiling points are uncorrected, and IR spectra were taken on a Perkin-Elmer Model 237-B grating or 576 ST spectrophotometer. The ¹H NMR spectra were run on a Varian A-60 or a Nicolet NT-300 WB spectrometer. The latter was used also for ¹³C NMR, operating at 300.06 and 75.45 MHz, respectively, with TMS as an internal standard for ¹H spectra and CDCl₃ (77.0 ppm) as an internal standard for ¹³C spectra. Mass spectra were obtained with a Kratos MS-25 instrument with a DS-55 data system, and GC was performed on a Wilkens Aerograph or a Nester/Faust Prepko apparatus. Elemental analyses for all new compounds were supplied by Galbraith Laboratories, Inc., Knoxville, TN, and Weiler and Strauss Laboratories, Oxford, England, and were within accepted limits (0.3% or better).

Materials. The needed ethyl 2-cyano-3-alkyl-2-alkenoates were prepared by a published method.³¹ They were converted to 2-cyano-3,3-dialkylalkanoates in 41–89% yields by the previously described procedure.¹¹ The reactants (R₃CMgBr and R₁R₂C= CHCH(CN)CO₂C₂H₅) and properties (bp, °C; n^{25}_{D}) for the 2-cyano-3,3-dialkylalkanoates follow: (a) R₁-R₃ = C₂H₅; 142-144 (15 mm);¹¹ (b) $R_1 = R_2 = C_2H_5$, $R_3 = C_4H_9$; 112–115 (0.5 mm); 1.4500;³² (c) $R_1 = R_2 = C_2H_5$, $R_3 = C_5H_{11}$; 130–132 (2 mm); 1.4513;³³ (d) $R_1 = R_2 = C_3H_7$, $R_3 = C_5H_{11}$; 144–145 (2 mm); 1.4512; (e) R_1 = C_2H_5 , $R_2 = C_6H_5$, $R_3 = C_4H_9$; 143–144 (0.6 mm); 1.5029; (f) R_1 = $R_2 = C_3H_7$, $R_3 = C_6H_{13}$; 150–152 (2 mm); 1.4520; (g) $R_1 = C_2H_5$, $\begin{array}{l} R_2 = C_4 H_9, R_3 = C_8 H_{17}; 153 - 155 \; (0.7 \; mm); 1.4539; (h) \; R_1 = C_{10} H_{21}, \\ R_2 = C_{11} H_{23}, \; R_3 = C_{12} H_{25} \; (see \; ref \; 11). \end{array}$

3,3-Dialkyl Nitriles 1. The 1 were obtained from the 2cyano-3,3-dialkylalkanoates by hydrolysis and decarboxylation; yields 72-95%. See Table I for physical properties.

5,5-Dialkyl-2,2-dimethyl-3-alkanimines 2. The procedure used for preparing 2a is representative. To 300 mL of $t-C_4H_9Li$ (0.5 mol) in pentane was added dropwise with stirring 28 g (0.2 mol)mol) of 1a in 50 mL of pentane. After the addition, the solution was heated at reflux for 4 h, cooled, and treated with 10% HCl. The aqueous layer was extracted with pentane, and the combined organic layers were washed with H_2O , NaHCO₃, and H_2O and dried $(MgSO_4)$. After removal of the pentane by distillation, the residue was distilled through a spinning-band column to give 25.7 g (65%) of 2a.

5,5-Dialkyl-2,2-dimethyl-3-alkanones 3. These were prepared by hydrolysis of the imines 2, as illustrated for obtaining 3a. A mixture of 15 g (0.08 mol) of 2a and 75 mL of 50 wt % H_2SO_4 was heated at reflux for 4 h. It was worked up, and the residue was distilled through a spinning-band column to give 11.1 g (74%) of 3a.

5,5-Diethyl-2,2-dimethyl-3-nonanone-4,4-d₂ (3h). A mixture of 17.5 g (0.08 mol) of 5,5-diethyl-2,2-dimethyl-3-nonanone (3b), 20 g (1 mol) of D₂O, and 16.2 g (0.3 mol) of NaOCH₃ was heated at reflux for 50 h. The layers were separated, the D_2O-H_2O layer was extracted twice with $(C_2H_5)_2O$, and the extract was combined with the organic layer. After drying $(MgSO_4)$ and removal of the $(C_2H_5)_2O$, the ¹H NMR spectrum of the crude product indicated about 80% exchange of the CH₂-C=O protons. The material was heated first with 20 g (1 mol) of D_2O and 16.2 g (0.3 mol) of $NaOCH_3$ for 90 h (ca. 90% exchange) and, finally, with 18 g (0.9) mol) of D₂O and 10 g (0.2 mol) of NaOCH₃ for 90 h. After workup, there resulted 16.5 g (94%) of **3h**: bp 133–135 °C (12 mm); n^{25} _D 1.4423; IR 1715 (s), 2190 (br) cm⁻¹; ¹H NMR δ 1.09 (s, 9 H), 0.55-1.68 (m, 19 H); ca. δ 2.5 missing.

5,5-Dialkyl-2,2-dimethyl-3-alkanols 4. The alcohols were prepared from 3 by the usual LiAlH₄ reduction procedure. They were obtained in 76-97% yields.

5,5-Diethyl-2,2-dimethyl-3-heptanol (4a) from 3,3-Diethylpentanal. The 3,3-diethylpentanal, 13 g (58%), was obtained from the reduction of 35 g (0.2 mol) of 3,3-diethylpentanoyl chloride, bp 99-100 °C (2.5 mm), p-nitroanilide, mp 117-118 °C, from the corresponding acid³⁴ and $SOCl_2$, using 4.5 g of Pd-BaSO₄ catalyst, 0.5 g of quinoline-S poison, and 200 mL of xylene; bp 75-76 °C (9 mm), n^{25} _D 1.4346. A solution of 10 g (0.07 mol) of the aldehyde in 50 mL of pentane was added dropwise to a solution of 120 mL (0.22 mol) of $t-C_4H_9Li$ in pentane. The mixture was heated at reflux for 3 h, cooled, and treated with 10% HCl. The layers were separated, washed $(H_2O, \text{ then } NaHCO_3)$, dried (MgSO₄), and concentrated. On distillation, there was obtained 5.95 g (43%) of 4a.

5,5-Diethyl-2,2-dimethyl-3-nonanol-4,4-d₂ (4g) and 3-(Deuteriooxy)-5,5-diethyl-2,2-dimethylnonane-3,4,4-d₃ (4h). A mixture of 1.15 g (0.03 mol) of LiAlH_4 , 9 g of 3h, and 200 mL of (C₂H₅)₂O afforded 7.4 g (82%) of 4g, bp 122-123 °C (9 mm), n^{25} _D 1.4528.

 \overline{A} solution of 13.1 g (0.057 mol) of **3h** in 30 mL of (C₂H₅)₂O was added to 1.45 g (0.034 mol) of LiAlD₄ and 100 mL of $(C_2H_5)_2O$.

⁽²⁴⁾ Doddrell, D. W.; Pegg, D. T.; Bendall, M. R. J. Magn. Reson. 1982, 48, 323-327

⁽²⁵⁾ Turner, D. L. Mol. Phys. 1981, 44, 1051-1058. Turner, D. L. J. Magn. Reson. 1982, 49, 175-178. Turner, D. L. J. Magn. Reson. 1983, 53, 259 -271

 ⁽²⁶⁾ Bax, A. J. Magn. Reson. 1984, 57, 314-318. Bax, A.; Ferretti, J.
 A.; Nashed, N.; Jerina, D. M. J. Org. Chem. 1985, 50, 3029-3034. Taylor,
 R. B.; Corley, D. G.; Tempesta, M. S. J. Nat. Prod. 1986, 49, 670-673.
 (27) Hansen, P. E.; Feeney, J.; Roberts, G. C. K. J. Magn. Reson. 1975,
 17, 249-261. Wasglishen, R. E. Schaefer, T. Can. J. Chem. 1972, 50, 2710-2712

⁽²⁸⁾ Abruscato, G. J.; Binder, R. G.; Tidwell, T. T. J. Org. Chem. 1972, 37, 1787-1790. Abruscato, G. J.; Ellis, P. D.; Tidwell, T. T. J. Chem. Soc., Chem. Commun. 1972, 988-989. Reference 9 and entries of ref 10.

⁽²⁹⁾ Kharasch, M. S.; Reinmuth, O. Grignard Reactions of Non-metallic Substances; Prentice-Hall: New York, 1954; pp 147-157.
(30) Buhler, J. D. J. Org. Chem 1973, 38, 904-906.

⁽³¹⁾ Cope, A. C.; Hoffmann, C. M.; Wyckoff, C.; Hardenbergh, E. J. Am. Chem. Soc. 1941, 63, 3452-3456.

 ⁽³²⁾ Jones, R. J.; Rabjohn, N., unpublished work.
 (33) Rabjohn, N.; Harbert, C. A. J. Org. Chem. 1970, 35, 3240-3243. (34) Rabjohn, N.; Phillips, L. V.; Stapp, P. R. J. Chem. Eng. Data 1962, 7, 543-544

Figure 2. Basic pulse sequence of 2-D INAPT. This sequence was like Bax's 1-D INAPT pulse sequence²⁶ with the modification that the evolution period t_1 was incremented regularly. All proton pulses were soft and applied to a single proton resonance. This afforded a selective long range heteronuclear 2-D J-resolved spectrum (Figure 3A) that contained only resonances from carbon atoms two, three, or four bonds removed from the proton, with coupling constants ranging from ~ 1 to 10 Hz.

Figure 3. (A) The 2-D INAPT spectrum showing long-range heteronuclear couplings of the vinyl proton to the adjacent carbons in 19c. The ${}^{3}J_{\rm CH}$ coupling of 5.8 Hz from the vinyl proton to the quaternary carbon at δ 45.4 is detailed. (B) A summary of the couplings obtained by the 2-D INAPT technique on 19c.

The mixture was heated at reflux for 4 h and worked up and the residue distilled through a spinning-band column. There was obtained 10.2 g (77%) of **4h**.

Dehydration of 2,2,5,5-Tetramethyl-3-hexanol with KHSO₄ and Alumina. A mixture of 5 g (0.05 mol) of the carbinol¹⁶ and 1 g of freshly fused KHSO₄ was heated at 180 °C for 24 h. After cooling, it was washed with H₂O and extracted twice with (C₂-H₆)₂O, and the latter was washed (H₂O, NaHCO₃) and dried (MgSO₄). The solvent was removed, and the residue was analyzed by GC (SE-30, 15%, on Chromosorb W, 130 °C). There resulted unchanged carbinol, plus a mixture of olefins, which by GC analysis consisted of 60% of 2,2,5,5-tetramethyl-3-hexene, 10% of 2,3,5,5-tetramethyl-1-hexene, and 30% of 2,3,5,5-tetramethyl-2-hexene.

When the carbinol was passed through a column of alumina (400 °C), the resulting olefins were 2,2,5,5-tetramethyl-3-hexene (60%), 2,3,5,5-tetramethyl-1-hexene (30%), and 2,3,5,5-tetra-

methyl-2-hexene (10%). No starting material was observed. Dehydration of 4 with KHSO₄. The preparation of 5,5diethyl-2,2-dimethyl-3-heptene (5a) is typical. A mixture of 4.7 g (0.024 mol) of 4a and 1 g of KHSO₄ was heated (180 °C, 24 h). After workup, the residue was examined by GC (10-ft Carbowax 20M, 15%, on Chromosorb W, 150 °C). Only starting material (60%) and 5a were present. Analysis by other columns on different instruments gave the same results. The residue was distilled through a spinning-band column to give 3 g of 4a and 1.1 g (72%) of 5a.

3-tert-Butyl-5,5-dialkyl-2,2-dimethyl-3-alkanols 6. The preparation of 3-tert-butyl-5,5-diethyl-2,2-dimethyl-3-heptanol (6a) is typical. A solution of 6.5 g (0.033 mol) of 5,5-diethyl-2,2-dimethyl-3-heptanone in 20 mL of pentane was added to 50 mL (0.1 mol) of $t-C_4H_9Li$ in pentane which had been flushed with N₂. After the addition, the mixture was refluxed for 10 h and worked up in the usual way. The residue was distilled through a spinning-band column to give 3.6 g (43%) of product.

3-tert-Butyl-5,5-dialkyl-2,2-dimethyl-3-alkenes 7. The procedure from the previous dehydration experiment was used with 3-tert-butyl-5,5-diethyl-2,2-dimethyl-3-nonanol (6b). The product showed (GC) the presence of five components: unchanged carbinol, the ketone from which the carbinol had been prepared, and three other compounds. The reaction mixture was distilled through a spinning-band column at ca. 0.2 mm to give 1.6 g of 5,5-diethyl-2,2-dimethyl-3-nonanone, 3.8 g of 3-tert-butyl-5,5diethyl-2,2-dimethyl-3-nonanol, and residue. This was separated by preparative GC using a 6-ft, 3/4-in. biwall SE-30 on a Chromosorb W column at 200 °C and a He flow rate of 200 mL/min. There was collected 2.1 g of 3-*tert*-butyl-5,5-diethyl-2,2-di-methyl-3-nonene (7a): $n^{25}_{\rm D}$ 1.4685; IR (no characteristic ab-sorptions); MS, m/e 266; ¹H NMR δ 5.18 (s, 1, C=CH), 1.21 and 1.29 (s, 9 each, 2 (CH₃)₃C), 0.55-1.90 (m, 19, CH₃ and CH₂); ¹³C NMR (CDCl₃) δ 153.1, 132.8, 42.4, 41.4, 38.2, 36.5, 33.8, 33.6, 26.6, 23.6, 14.3, 9.0. There also was obtained 0.4 g of 3-tert-butyl-5,5-diethyl-2,3-dimethyl-1-nonene: n²⁵_D 1.4681; IR (neat) 3120 (m), 1630 (m), 895 (s) cm⁻¹; ¹H NMR δ 0.55–2.10 (m, 27, CH₃, CH₂), 0.88 (s, 9, (CH₃)₃C), 5.00 (m, 2, C=CH₂). A third component was present, but could not be isolated. The spectra are representative of the other 7 that were synthesized: 3-tert-butyl-2,2-dimethyl-5,5-dipropyl-3-octene (7b) $(n^{25}_{D} 1.4674)$ and also 3-tertbutyl-2,3-dimethyl-5,5-dipropyl-1-octene (24) [n²⁵_D 1.4680; IR (neat) 3090 (m), 1620 (m), 890 (s) cm⁻¹; ¹H NMR δ 4.65–5.05 (m, 2, C=CH₂), 0.86 [s, 9, (CH₃)₃C], 0.65-1.90 (m, 32, CH₃CH₂)] and 6,6-dipropyl-2,2,3,3,4-pentamethyl-4-nonene (25) [n²⁵_D 1.4575; IR (neat) (no alkene absorptions); ¹H NMR δ 5.10 (s, 1, C=CH), 1.08 [s, 9, (CH₃)₃C], 0.65–1.55 (m, 39, CH₃, CH₂); MS, m/e 280]; 3-tert-butyl-2,2-dimethyl-5,5-dipropyl-3-decene (7c) (n²⁵_D 1.4660); 3-tert-butyl-2,2-dimethyl-5-ethyl-5-phenyl-3-nonene (7d) $(n^{25}_{\rm D})$ 1.5607); 5-butyl-3-tert-butyl-2,2-dimethyl-5-ethyl-3-tridecene (7e) $(n^{25}_{\rm D} 1.4670).$

3,3-Dialkylalkanoic Acid Chlorides 8. Nitriles 1 were converted to the corresponding acids by heating with KOH in ethylene glycol for $30 h_1^{34}$ yields 88-92%. The acid chlorides were prepared from the acids by treatment with SOCl₂. In some cases they were not distilled, due to a tendency to decompose; however, they gave satisfactory elemental analyses.

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$) (s), no 3200 AR (neat) δ											
) (s), no 3200 AR (neat) δ											
) (s), no 3200 AR (neat) δ											
) (s), no 3200 MR (neat) δ											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) (s), no 3200 MR (neat) δ											
) (s), no 3200 MR (neat) δ											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) (s), no 3200 AR (neat) δ											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) (s), no 3200 AR (neat) δ											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) (s), no 3200 AR (neat) δ											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) (s), no 3200 AR (neat) δ											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $) (s), no 3200 AR (neat) δ											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) (s), no 3200 AR (neat) δ											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AR (neat) δ											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· · ·											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$), 2.12 (s, 2 H),											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$), 0.50-1.75											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(s) cm^{-1} H$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\lambda 2 35 (s 2)$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 H)											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 H)											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$, 10 11)											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	uteriated 2b)											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J(s), 3480(m),											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	f = 1.55 (m + 16)											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 - 1.00 (m, 10)											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\mathcal{F} $\mathbf{\Pi}$, \mathcal{F} , \mathcal{F} \mathcal{F} \mathcal{F}											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(exclidinge)											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(neat) 2150 0, 2700 (m), ⁻¹ ; ¹ H NMR 5-1.55 (m, 19											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9 H), no OH											
5a C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_4H_9 75 $121-102/30$ 1.4310 IR (neat 2980)5b C_2H_5 C_2H_5 C_4H_9 75 $121-122/40$ 1.4394 trans) cm ⁻¹ 5c C_3H_7 C_3H_7 C_5H_{11} 80 $157-158/43$ 1.4413 (neat) δ 0.55d C_2H_5 C_4H_9 C_6H_5 68 $150-152/20$ 1.4912 H), 1.01 (s,5e C_2H_5 C_4H_9 C_8H_{17} 89 $146-148/10$ 1.4460 2 H, trans,5f C_7H_{15} $C_{10}H_{21}$ $C_{12}H_{25}$ 75 $200-204/0.1$ 1.4370 C_{urH_mD} $IR 2$ 5g C_9H_5 $C_{14}H_9$ $C_{14}H_9$ 67 $122-123/40$ 1.4370 C_{urH_mD} $IR 2$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(m), 995 (s.											
5c $C_{3}H_{7}$ $C_{3}H_{7}$ $C_{5}H_{11}$ 80 $157-158/43$ 1.4413 $(neat) \delta 0.5$ 5d $C_{2}H_{5}$ $C_{4}H_{9}$ $C_{6}H_{5}$ 68 $150-152/20$ 1.4912 H), 1.01 (s,5e $C_{2}H_{5}$ $C_{4}H_{9}$ $C_{8}H_{17}$ 89 $146-148/10$ 1.4460 2 H, trans,5f $C_{7}H_{15}$ $C_{10}H_{21}$ $C_{12}H_{25}$ 75 $200-204/0.1$ 1.4370 5f $C_{9}H_{5}$ $C_{2}H_{5}$ $C_{12}-123/40$ 1.4370 $C_{12}H_{22}D_{1$	¹ H NMR											
5d C_2H_5 C_4H_9 C_6H_5 68 $150-152/20$ 1.4912 H), 1.01 (s,5e C_2H_5 C_4H_9 C_8H_{17} 89 $146-148/10$ 1.4460 2 H, trans,5f C_7H_{15} $C_{10}H_{21}$ $C_{12}H_{25}$ 75 $200-204/0.1$ 1.4580 5g C_9H_5 C_4H_6 67 $122-123/40$ 1.4370 $C_{12}H_{22}D_{1$	5–1.55 (m. 15											
$5e$ C_2H_5 C_4H_9 C_9H_{17} 89 $146-148/10$ 1.4460 2 H, trans, $5f$ C_7H_{15} $C_{10}H_{21}$ $C_{12}H_{25}$ 75 $200-204/0.1$ 1.4580 $5g$ C_0H_5 C_1H_6 67 $122-123/40$ 1.4370 $C_{12}H_{22}D_{12}D$	9 H), 5.17 (a.											
5f C_7H_{15} $C_{10}H_{21}$ $C_{12}H_{25}$ 75 200-204/0.1 1.4580 5g C_0H_5 C_0H_5 C_1H_6 67 122-123/40 1.4370 $C_{12}H_{22}D_{12}B_{22}$	$J_{AB} = 16.5 \text{ Hz})$											
5g CoH CH CH 67 122-123/40 1.4370 CH.D. IR 2	AL ,											
	230 (m), 900											
(m), cm ⁻¹ ; 1 (m, 19 H)8	H NMR δ 0.55 1.00 (s, 9 H)8											
5h C_2H_5 C_2H_5 C_4H_9 74 133-134/80 1.4365^a $C_{15}H_{28}D_2$, IR	2240 (m), 730											
(s) cm ⁻¹ ; ¹ H 0.55–1.55 (r (s, 9 H), no near ô 5	NMR δ n, 19 H), 0.98 absorption											
$R_1R_2R_3CCH_2C(OH)[C(CH_3)_3]_2$, 6												
6a C ₂ H ₅ C ₂ H ₅ C ₂ H ₅ 43 81-82/0.1; mp 35-37 °C IR (Nujol) 35	30 (s), 1080 (s)											
cm^{-1} ; ¹ H N 0.65–1.68 (n (s, 9 H)	MR (CCl₄) δ n, 17 H), 1.09											
6b C_2H_5 C_2H_5 C_4H_9 64 114-116/0.2; mp 78-79 °C 1.4771												
60 U_3H_7 U_3H_7 U_3H_7 91 6d C_2H_2 C_2H_3 C_2H_4 9 1 $28-129/0.22$ mp. 58-61 °C 1.4740												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
6f C_2H_5 C_4H_6 C_6H_{17} 68 160-161/0.3 1.4729												
$R_1R_2R_3CCH = C[C(CH_3)_3]_2, 7$												
$\begin{array}{cccc} 7\mathbf{a} & \mathbf{U}_2\mathbf{H}_5 & \mathbf{U}_2\mathbf{H}_5 & \mathbf{U}_4\mathbf{H}_9 & & & & & & & \\ 7\mathbf{b} & \mathbf{O} \mathbf{H} & \mathbf{O} \mathbf{H} & \mathbf{O} \mathbf{H} & & & & & & & & \\ \mathbf{C} \mathbf{C} & \mathbf{c} \mathbf{m} & \mathbf{c} \mathbf{H} & & & & & & & & \\ \mathbf{C} \mathbf{C} & \mathbf{c} \mathbf{m} & \mathbf{c} \mathbf{H} & & & & & & & \\ \mathbf{C} \mathbf{C} & \mathbf{c} \mathbf{m} & \mathbf{c} \mathbf{H} & & & & & & & \\ \mathbf{C} \mathbf{C} & \mathbf{c} \mathbf{m} & \mathbf{c} \mathbf{H} & & & & & & \\ \mathbf{C} \mathbf{C} & \mathbf{c} \mathbf{m} & \mathbf{c} \mathbf{H} & & & & & \\ \mathbf{C} \mathbf{C} & \mathbf{c} \mathbf{m} & \mathbf{c} \mathbf{H} & & & & & \\ \mathbf{C} \mathbf{C} & \mathbf{c} \mathbf{m} & \mathbf{c} \mathbf{H} & & & & \\ \mathbf{C} \mathbf{C} & \mathbf{C} \mathbf{H} & \mathbf{C} \mathbf{H} & & & & \\ \mathbf{C} \mathbf{C} & \mathbf{C} \mathbf{H} & \mathbf{C} \mathbf{H} & \mathbf{C} \mathbf{H} & & & \\ \mathbf{C} \mathbf{C} & \mathbf{C} \mathbf{H} & \mathbf{C} \mathbf{H} & \mathbf{C} \mathbf{H} \\ \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{H} & \mathbf{C} \mathbf{H} & \mathbf{C} \mathbf{H} \\ \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{H} & \mathbf{C} \mathbf{H} & \mathbf{C} \mathbf{H} \\ \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{H} \\ C$												
$r_0 = r_0 r_1 = r_0 r_0 r_1 = r_0 r_0 r_1 = r_0 r_0 r_1 = r_0 r_0 r_0 r_0 r_0 r_0 r_$												
$\begin{array}{cccc} & & & & & & \\ \hline & & & & & & \\ \hline & & & &$												
$7e$ C_2H_5 C_4H_9 C_8H_{17} GC separation												

							Labit	I (Continueu	/	
compd	R1	R_2	R_3	R ₄	R_5	R ₆	yield, %	bp (°C)/mm	n _D	spectral, other data
8a	C_2H_5	C_2H_5	C_2H_5				R ₁ R ₂ R ₃ CCH 94	H ₂ CO ₂ H and -C 99–100/25	OCl, 8	<i>p</i> -nitroanilide, mp 117–118 °C; acid, mp° 42–44 °C, hp° 155–158 °C/1 mm
8b	C_3H_7	C_4H_9	C_5H_{11}				not purified			42 44 0, bp 100 100 0/1 mm
10a 10b 10c	$\begin{array}{c} \mathrm{C_2H_5}\\ \mathrm{C_2H_5}\\ \mathrm{C_3H_7} \end{array}$	$\begin{array}{c} \mathrm{C_2H_5}\\ \mathrm{C_2H_5}\\ \mathrm{C_4H_9} \end{array}$	$C_{2}H_{5}$ $C_{2}H_{5}$ $C_{5}H_{11}$	$\begin{array}{c} \mathrm{CH}_3 \\ \mathrm{C}_2\mathrm{H}_5 \\ \mathrm{C}_2\mathrm{H}_5 \end{array}$	$\begin{array}{c} \mathrm{CH}_3 \\ \mathrm{C_2H_5} \\ \mathrm{C_2H_5} \end{array}$	$\begin{array}{c} \mathrm{C_2H_5}\\ \mathrm{C_2H_5}\\ \mathrm{C_4H_9} \end{array}$	R ₁ R ₂ R ₃ CCH 89 80 65	$H_2C(=0)CR_4R_6$ 132-133/15 148-149/7 135-136/0.7	R ₆ , 10 1.4448 1.4561 1.4580	
11a 11b 11c	$\begin{array}{c} \mathrm{C_2H_5}\\ \mathrm{C_2H_5}\\ \mathrm{C_3H_7} \end{array}$	$\begin{array}{c} \mathrm{C_2H_5}\\ \mathrm{C_2H_5}\\ \mathrm{C_4H_9} \end{array}$	$C_{2}H_{5}$ $C_{2}H_{5}$ $C_{5}H_{11}$	$\begin{array}{c} \mathrm{CH}_3\\ \mathrm{C_2H_5}\\ \mathrm{C_2H_5} \end{array}$	$\begin{array}{c} CH_3\\ C_2H_5\\ C_2H_5\end{array}$	$\begin{array}{c} \mathrm{C_2H_5}\\ \mathrm{C_2H_5}\\ \mathrm{C_4H_9} \end{array}$	R₁R₂R₃ CCH 95 97 87	² CH(OH)CR ₄ R 107–108/6 153–154/14 160–162/0.5	${}_{5}^{5} m R_{6},11$ 1.4567 1.4648 1.4636	
12a	C_2H_5	C_2H_5	C_2H_5	CH_3	CH3	C_2H_5	R ₁ R ₂ R ₃ CC 75	² H CHCR₄R₅H 112–113/40	R ₆ , 12 1.441	IR (neat) 3040 (m), 970 (s) cm ⁻¹ ; ¹ H NMR δ
12b 12c	$\substack{\mathrm{C_2H_5}\\\mathrm{C_3H_7}}$	$\substack{\mathrm{C_2H_5}\\\mathrm{C_4H_9}}$	$\substack{\mathrm{C_2H_5}\\\mathrm{C_5H_{11}}}$	$\substack{\mathrm{C_2H_5}\\\mathrm{C_2H_5}}$	$\substack{\mathrm{C_2H_5}\\\mathrm{C_2H_5}}$	$\substack{ C_2H_5\\ C_4H_9}$	80 91	120–122/17 117–118/1	$1.4452 \\ 1.4580$	0.55-1.62 (iii, 50 H), 4.56 (S, 2 H, trails)
13a 13b 13c	C_2H_5 C_3H_7 C_3H_7	$\begin{array}{c} \mathrm{C_{2}H_{5}}\\ \mathrm{C_{3}H_{7}}\\ \mathrm{C_{3}H_{7}} \end{array}$	$C_{6}H_{11} \\ C_{6}H_{13} \\ C_{6}H_{13}$	C4H9 C3H7 <i>i</i> -C4H9			R ₁ R ₂ F 93 83 73	$R_3CCHR_4CN, 13$ 162–164/13 146–147/2 148–150/2	3 1.4531 1.4532 1.4538	
14a	C_2H_5	C_2H_5	C_5H_{11}	C₄H9			R ₁ R ₂ R ₃ CCH1 77	R ₄ C(=NH)C(C 128-129/0.2	H ₃) ₃ , 14 1.4653	
15a 15b 15c	$\begin{array}{c} \mathrm{C_2H_5}\\ \mathrm{C_3H_7}\\ \mathrm{C_3H_7}\end{array}$	$\begin{array}{c} \mathrm{C_2H_5}\\ \mathrm{C_3H_7}\\ \mathrm{C_3H_7} \end{array}$	$C_{5}H_{11} \\ C_{6}H_{13} \\ C_{6}H_{13}$	C4H9 C3H7 <i>i</i> -C4H9			R₁R₂R₃CCHI 91 95 71	R ₄ CO ₂ H and -C 142-145/0.5 160-162/0.5 165-168/0.5	COCl, 15 1.4571 1.4577 1.4568	acid chloride not purified acid chloride not purified acid chloride not purified
16a 16b 16c	$C_{2}H_{5}\\ C_{3}H_{7}\\ C_{3}H_{7}$	$\begin{array}{c} C_2H_5\\ C_3H_7\\ C_3H_7\end{array}$	$C_{6}H_{11} \\ C_{6}H_{13} \\ C_{6}H_{13}$	C4H9 C3H7 <i>i</i> -C4H9			R ₁ R ₂ R ₃ CCH 20 20 23	IR ₄ C(=O)C(CH 126-127/3 134-135/2 128-129/2	H ₃) ₃ , 16 1.4585 1.4582 1.4575	
18a 18b 18c	$\begin{array}{c} \mathrm{C_2H_5}\\ \mathrm{C_3H_7}\\ \mathrm{C_3H_7} \end{array}$	$\begin{array}{c} \mathrm{C_2H_5}\\ \mathrm{C_3H_7}\\ \mathrm{C_3H_7} \end{array}$	$C_5H_{11} \\ C_6H_{13} \\ C_6H_{13}$	C4H9 C3H7 <i>i</i> -C4H9			R ₁ R ₂ R ₃ CCH 49 62 47	R ₄ CH(OH)C(C 118-120/0.5 153-155/1 158-160/1	${ m H_3)_3,\ 18}\ 1.4652\ 1.4642\ 1.4640$	
19a 19b 19c	$\begin{array}{c} \mathrm{C_2H_5}\\ \mathrm{C_3H_7}\\ \mathrm{C_3H_7} \end{array}$	$\begin{array}{c} \mathrm{C_2H_5}\\ \mathrm{C_3H_7}\\ \mathrm{C_3H_7} \end{array}$	$C_5H_{11} \\ C_6H_{13} \\ C_6H_{13}$	C4H9 C3H7 <i>i</i> -C4H9			R ₁ R ₂ R ₃ CC 48 46 40	$CR_4 = CHC(CH_3)$ 122-124/8 105-108/2 112-114/2) ₃ , 19 1.4542 1.4584 1.4562	d

Table I (Continued)

^aReference 18. ^bSee Experimental Section for details. Also isolated were 3-*tert*-butyl-5,5-diethyl-2,3-dimethyl-1-nonene, 24, and 25. ^cReference 34. ^dSee Experimental Section for spectral properties.

Tetraalkylalkanones 10. These ketones were prepared by a modification of the method of Percival, Wagner, and Cook.²⁰

6,6-Diethyl-3,3-dimethyl-4-octanone (10a) was obtained when 260 mL (0.27 mol) of a Grignard reagent, prepared from 8 g (0.33 mol) of Mg, 30 g (0.29 mol) of 2-chloro-2-methylbutane, and 300 mL of $(C_2H_5)_2O$, was added (1 h) to a mixture of 46 g (0.27 mol) of 3,3-diethylpentanoyl chloride (8a), 2 g of CuCl, and 200 mL of $(C_2H_5)_2O$ at reflux. The solvent was distilled, and the residue was heated at 100 °C for 2 h. It was decomposed (ice-HCl) and worked up. The residue gave 48.5 g (89%) of product. Ketones 10b,c were prepared similarly from 3-chloro-3-ethylpentane and 3,3-diethylpentanoyl chloride and from 3-chloro-3-ethylpentane and 3-butyl-3-propyloctanoyl chloride, respectively.

Preparation of Tetraalkylalkanols 11 and Dehydration to Olefins 12. Ketones 10 were reduced with LiAlH_4 as in the preparation 4. They were dehydrated by the method described previously for obtaining 5.

2,3,3-Trialkyl Nitriles 13 and 4-Butyl-5,5-diethyl-2,2-dimethyl-3-decanimine (14). The nitriles 1 were alkylated in the 2-positions by the method of Rabjohn and Stapp.¹³ The 2-butyl nitrile 13a was caused to react with t-C₄H₃Li as described for the preparation of imines 2. There was obtained 77% of 14: bp 128-129 °C (0.2 mm); $n^{25}_{\rm D}$ 1.4656. A mixture of 20 g (0.07 mol) of the imine 14 and 100 mL of 50% H₂SO₄ was heated at reflux for 12 h and worked up as usual. IR analysis of the reaction mixture showed the presence of only starting imine and no ketone. The above procedure was repeated with 25%, 75%, and 95% H₂SO₄, but only unchanged imine resulted.

2,3,3-Trialkyl Carboxylic Acids and Acid Chlorides 15. 2-Butyl-3,3-diethyloctanoic acid was made by a modification of the procedure of Sarel and Newman.²³ A mixture of 117 g (0.47 mol) of 2-butyl-3,3-diethyloctanenitrile (13a) and 500 g of 75% H₂SO₄ was stirred and heated at 100 °C for 8 h. To the flask was added 205 g (3 mol) of NaNO₂ at a rate to maintain the contents of the flask at 80–85 °C. After separation of the layers and extraction with ether, followed by the usual cleanup, the residue was distilled to give 116 g (91%) of the desired acid 15a. Two other acids (15b,c) were prepared similarly.

The acids were treated with $SOCl_2$ in the usual way to afford acid chlorides. These were not distilled due to a tendency to decompose at the high temperatures required.

2,2-Dimethyl-4,5,5-trialkyl-3-alkanones 16. 4-Butyl-5,5diethyl-2,2-dimethyl-3-decanone (16a) was obtained by adding a $(C_2H_5)_2O$ solution of 660 mL, containing 0.61 mol of t-C₄H₉MgCl, to 111 g (0.4 mol) of 2-butyl-3,3-diethyloctanoyl chloride (15a), 5 g of CuCl, and 500 mL of $(C_2H_5)_2O$. The reaction mixture produced 22.5 g (20%) of the ketone.

2,2-Dimethyl-4,5,5-trialkyl-3-alkanols 18. These compounds resulted when the ketones 16 were treated with t-C₄H₉Li. From a mixture of 250 mL (0.25 mol) of t-C₄H₉Li in pentane and 22.5 g (0.076 mol) of 4-butyl-5,5-diethyl-2,2-dimethyl-3-decanone (16a) in 50 mL of pentane there were obtained 7 g (49%) of stereoisomeric 4-butyl-5,5-diethyl-2,2-dimethyl-3-decanols (18a) and 8.4 g of unchanged ketone: bp 118 °C (0.5 mm); n^{25} _D 1.4652; IR (neat) 3645 (s), 3583 (s), 3535 (br) cm⁻¹; ¹H NMR (CDCl₃) δ 0.75–0.87 (m), 0.90-0.93 (s), 0.96-0.98 (s), 1.20-1.23 (s), 1.24-1.64 (m), 3.93-3.41 (d), 3.42-3.44 (s); ¹³C NMR (CDCl₃) δ 84.7, 44.8, 43.6, 36.0, 35.1, 33.3, 33.2, 33.1, 28.2, 27.2, 27.0, 26.9, 24.7, 24.5, 23.8, 23.8, 23.7, 22.8, 14.2, 14.0, 9.4, 9.3, 8.7, 8.6. Two other secondary alcohols (18b,c) were prepared in the same manner.

2,2-Dimethyl-4,5,5-trialkyl-3-alkenes 19. The dehydration of the carbinols 18 was accomplished by heating them with KHSO₄ in essentially the same way as used for preparing alkenes 5. Those obtained and their spectral properties are as follows: 4-butyl-5,5-diethyl-2,2-dimethyl-3-decene (19a) [IR (neat) 1625 (w) cm⁻¹; ¹H NMR (CDCl₃) δ 5.04 (s, 1, C=CH), 2.00–2.5 (t, 3, allylic H's), 1.12 [s, 9, C(CH₃)₃], 0.64–0.95 (m, 30, CH₂CH₃); ¹³C NMR (CDCl₃) δ 140.7, 136.4, 45.4, 36.5, 34.0, 32.8, 31.8, 30.8, 28.8, 27.5, 27.0, 23.9, 23.3, 22.8, 14.2, 14.1, 8.3]; 3-tert-butyl-2,2-dimethyl-4,5,5-tripropyl-3-undecene (19b) [IR (neat) 1635 (w) cm⁻¹; ¹H NMR (CDCl₃) δ 5.01 (s, 1, =CH), 1.95-2.00 (t, 2, allylic H's), 1.16-1.40 $(m, 12, CH_2), 1.11 [s, 9, C(CH_3)_3], 0.82-1.17 (m, 20, CH_2, CH_3);$ ¹³C NMR (CDCl₃) δ 141.6, 136.0, 45.5, 38.3, 35.8, 33.5, 32.2, 31.9, 30.5, 30.2, 25.3, 23.9, 23.0, 17.2, 15.2, 15.1, 14.3]; 3-tert-butyl-2,2-dimethyl-5,5-dipropyl-4-isopropyl-3-undecene (19c) [IR (neat) 1620 (w) cm⁻¹; UV (hexane) λ_{max} 200.5 nm (ϵ 8923); ¹H NMR (CDCl₃) δ 5.17 (s, 1, =CH), 2.04–2.07 (d, 2, allylic), 1.96–2.00 (m, 1, CH), 1.23-1.36 (m, CH₂), 1.12 [s, 9, C(CH₃)₃], 0.83-0.97 (m, CH₂, CH₃); ¹³C NMR (CDCl₃) δ 139.1, 138.0, 45.5, 38.8, 36.9, 36.3, 32.2,

32.1, 30.4, 28.1, 23.8, 23.0, 22.8, 17.1, 15.0, 14.2; H-C long-range correlations (C==CH) irradiated; δ 139.06 (q, $J_{\rm CH}$ = 2.4 Hz), 45.43 $(q, J_{CH} = 5.8 \text{ Hz}), 36.93 \text{ (CH}_2, J = 10.1 \text{ Hz}), 33.16 \text{ (q, } J = 2.1 \text{ Hz}),$ 32.23 (CH₃, J = 3.9 Hz), 28.11 (CH, $J \simeq 1$ Hz).

NMR Procedures. The 2-D INAPT sequence shown in Figure 2 is similar to Nagayama's modification³⁵ of the 1-D selective refocused INEPT experiment,³⁶ except that all of the proton pulses were soft, $\gamma(H_2) = 25$ Hz giving a 90° proton pulse width of 10 ms. This modification was necessary on the Nicolet NT series of spectrometers which only allow rapid switching of the decoupler power between two levels. The F₁ spectral window was equal to $/_{2t}$ and was set to 40 Hz in this case. The delay Δ was optimized for $J_{\rm CH} = 7$ Hz, and a 32×2 K data set was acquired in approximately 2 h. This was processed with standard Nicolet software to yield a 64×1 K frequency domain spectrum with DM = 4 and DM = 3 in the t_2 and t_1 dimensions, respectively.

The 2-D autocorrelated double quantum coherence spectroscopy experiment was performed ca. 500 mg of 19c in a 5-mm carbon probe. A $64 \times 4K$ data set was acquired in 47 h and processed to yield a $256 \times 2K$ frequency domain spectrum. This experiment was optimized for J_{CC} = 42 Hz, and 12 correlations were observed.

(35) Jippo, T.; Kamo, O.; Nagayama, K. J. Magn. Reson. 1986, 66, 344 - 348

(36) Bax, A.; Niu, C.-H.; Live, D. J. Am. Chem. Soc. 1984, 106, 1150 - 1151.

Revised Structures of Robustadials A and B from Eucalyptus robusta¹

Qi Cheng and John K. Snyder*

Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215

Received March 8, 1988

Robustadials A and B have been isolated from the leaves of Eucalyptus robusta Smith (Myrtaceae), separated as their dimethyl ethers, and their structures reinvestigated by spectroscopic techniques. The structures are shown to include the pinane skeleton by using various one- and two-dimensional NMR methods. Particularly useful were the 2D relayed coherence transfer and XCORFE pulse sequences.

Introduction

The Chinese traditional medicine "Da Ye An", prepared from the leaves of Eucalyptus robusta Smith (Myrtaceae), has a long, successful history for treating malaria and other ailments.² Activity against the malaria-inducing protozoan Plasmodium berghei has been traced to the phenolic components of the 95% ethanol extract, from which an active compound, robustaol A (1), was subsequently isolated.³ A mixture of four chromans with even greater activity yielded two new compounds, robustadials A and B, which were assigned structures 2 and $3.^4$ The separation of 2 and 3 was accomplished after conversion to their dimethyl ethers. The remaining two chromans were identical with euglobals Ia_1 (4) and Ia_2 (5), previously reported from Eucalyptus globulus.⁵

Recently, the synthesis of 6, the dimethyl ether of 2, revealed that the structures of the robustadials were

misassigned.⁶ A new structure (7) was then suggested for robustadial A, robustadial B being the 7-epimer.⁷ We now report the reisolation of robustadials A and B as their

⁽¹⁾ This paper is dedicated to Professor Herman Kalckar on the oc-

casion of his 80th birthday (March 26, 1988). (2) In Zhong Cao Yao Xue (Nanjing Yao Xue Yuan); 'Zhong Cao Yao Xue' Bian Xie Zu, Jiang Su Ren Min Chu Ban She: Nanjing; Part 3, p 705.

⁽³⁾ Qin, G. W.; Chen, H. C.; Wang, H. C.; Qian, M. K. Huaxue Xuebao 1981, *39*, 83.

⁽⁴⁾ Xu, R.; Snyder, J. K.; Nakanishi, K. J. Am. Chem. Soc. 1984, 106, 734

⁽⁵⁾ Kozuka, M.; Sawada, T.; Kasahara, F.; Mizuta, E.; Amano, T.; Komiya, T.; Goto, M. Chem. Pharm. Bull. 1982, 30, 1952.

⁽⁶⁾ Lal, K.; Zarate, E. A.; Youngs, W. J.; Salomon, R. G. J. Am. Chem. Soc. 1986, 108, 1311.

⁽⁷⁾ The numbering system is that proposed by Kozuka et al., ref 5.